Goto

Collaborating Authors

 Castile and León


A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction

arXiv.org Artificial Intelligence

Accurate and reliable air pollution forecasting is crucial for effective environmental management and policy-making. llull-environment is a sophisticated and scalable forecasting system for air pollution, inspired by previous models currently operational in Madrid and Valladolid (Spain). It contains (among other key components) an encoder-decoder convolutional neural network to forecast mean pollution levels for four key pollutants (NO$_2$, O$_3$, PM$_{10}$, PM$_{2.5}$) using historical data, external forecasts, and other contextual features. This paper investigates the augmentation of this neural network with an attention mechanism to improve predictive accuracy. The proposed attention mechanism pre-processes tensors containing the input features before passing them to the existing mean forecasting model. The resulting model is a combination of several architectures and ideas and can be described as a "Hybrid Enhanced Autoregressive Transformer", or HEART. The effectiveness of the approach is evaluated by comparing the mean square error (MSE) across different attention layouts against the system without such a mechanism. We observe a significant reduction in MSE of up to 22%, with an average of 7.5% across tested cities and pollutants. The performance of a given attention mechanism turns out to depend on the pollutant, highlighting the differences in their creation and dissipation processes. Our findings are not restricted to optimizing air quality prediction models, but are applicable generally to (fixed length) time series forecasting.


Application of Machine Learning Algorithms in Classifying Postoperative Success in Metabolic Bariatric Surgery: A Comprehensive Study

arXiv.org Artificial Intelligence

Objectives: Metabolic Bariatric Surgery (MBS) is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types. Methods: Various machine learning models, including GaussianNB, ComplementNB, KNN, Decision Tree, KNN with RandomOverSampler, and KNN with SMOTE, were applied to a dataset of 73 patients. The dataset, comprising psychometric, socioeconomic, and analytical variables, was analyzed to determine the most efficient predictive model. The study also explored the impact of different variable groupings and oversampling techniques. Results: Experimental results indicate average accuracy values as high as 66.7% for the best model. Enhanced versions of KNN and Decision Tree, along with variations of KNN such as RandomOverSampler and SMOTE, yielded the best results. Conclusions: The study unveils a promising avenue for classifying patients in the realm of metabolic bariatric surgery. The results underscore the importance of selecting appropriate variables and employing diverse approaches to achieve optimal performance. The developed system holds potential as a tool to assist healthcare professionals in decision-making, thereby enhancing metabolic bariatric surgery outcomes. These findings lay the groundwork for future collaboration between hospitals and healthcare entities to improve patient care through the utilization of machine learning algorithms. Moreover, the findings suggest room for improvement, potentially achievable with a larger dataset and careful parameter tuning.


Feasibility of Social-Network-Based eHealth Intervention on the Improvement of Healthy Habits among Children

arXiv.org Artificial Intelligence

This study shows the feasibility of an eHealth solution for tackling eating habits and physical activity in the adolescent population. The participants were children from 11 to 15 years old. An intervention was carried out on 139 students in the intervention group and 91 students in the control group, in two schools during 14 weeks. The intervention group had access to the web through a user account and a password. They were able to create friendship relationships, post comments, give likes and interact with other users, as well as receive notifications and information about nutrition and physical activity on a daily basis and get (virtual) rewards for improving their habits. The control group did not have access to any of these features. The homogeneity of the samples in terms of gender, age, body mass index and initial health-related habits was demonstrated. Pre- and post-measurements were collected through self-reports on the application website. After applying multivariate analysis of variance, a significant alteration in the age-adjusted body mass index percentile was observed in the intervention group versus the control group, as well as in the PAQ-A score and the KIDMED score. It can be concluded that eHealth interventions can help to obtain healthy habits. More research is needed to examine the effectiveness in achieving adherence to these new habits.


A New Method for Sensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines

arXiv.org Artificial Intelligence

Currently, for many applications, it is necessary to know the speed and position of motors. This can be achieved using mechanical sensors coupled to the motor shaft or using sensorless techniques. The sensorless techniques in brushed dc motors can be classified into two types: 1) techniques based on the dynamic brushed dc motor model and 2) techniques based on the ripple component of the current. This paper presents a new method, based on the ripple component, for speed and position estimation in brushed dc motors, using support vector machines. The proposed method only measures the current and detects the pulses in this signal. The motor speed is estimated by using the inverse distance between the detected pulses, and the position is estimated by counting all detected pulses. The ability to detect ghost pulses and to discard false pulses is the main advantage of this method over other sensorless methods. The performed tests on two fractional horsepower brushed dc motors indicate that the method works correctly in a wide range of speeds and situations, in which the speed is constant or varies dynamically.


ANN-based position and speed sensorless estimation for BLDC motors

arXiv.org Artificial Intelligence

BLDC motor applications require precise position and speed measurements, traditionally obtained with sensors. This article presents a method for estimating those measurements without position sensors using terminal phase voltages with attenuated spurious, acquired with a FPGA that also operates a PWM-controlled inverter. Voltages are labelled with electrical and virtual rotor states using an encoder that provides training and testing data for two three-layer ANNs with perceptron-based cascade topology. The first ANN estimates the position from features of voltages with incremental timestamps, and the second ANN estimates the speed from features of position differentials considering timestamps in an acquisition window. Sensor-based training and sensorless testing at 125 to 1,500 rpm with a loaded 8-pole-pair motor obtained absolute errors of 0.8 electrical degrees and 22 rpm. Results conclude that the overall position estimation significantly improved conventional and advanced methods, and the speed estimation slightly improved conventional methods, but was worse than in advanced ones.


Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar

arXiv.org Artificial Intelligence

Recent studies confirm the applicability of Inertial Measurement Unit (IMU)-based systems for human motion analysis. Notwithstanding, high-end IMU-based commercial solutions are yet too expensive and complex to democratize their use among a wide range of potential users. Less featured entry-level commercial solutions are being introduced in the market, trying to fill this gap, but still present some limitations that need to be overcome. At the same time, there is a growing number of scientific papers using not commercial, but custom do-it-yourself IMU-based systems in medical and sports applications. Even though these solutions can help to popularize the use of this technology, they have more limited features and the description on how to design and build them from scratch is yet too scarce in the literature. The aim of this work is two-fold: (1) Proving the feasibility of building an affordable custom solution aimed at simultaneous multiple body parts orientation tracking; while providing a detailed bottom-up description of the required hardware, tools, and mathematical operations to estimate and represent 3D movement in real-time. (2) Showing how the introduction of a custom 2.4 GHz communication protocol including a channel hopping strategy can address some of the current communication limitations of entry-level commercial solutions. The proposed system can be used for wireless real-time human body parts orientation tracking with up to 10 custom sensors, at least at 50 Hz. In addition, it provides a more reliable motion data acquisition in Bluetooth and Wi-Fi crowded environments, where the use of entry-level commercial solutions might be unfeasible. This system can be used as a groundwork for developing affordable human motion analysis solutions that do not require an accurate kinematic analysis.


Adolescent relational behaviour and the obesity pandemic: A descriptive study applying social network analysis and machine learning techniques

arXiv.org Artificial Intelligence

Aim: To study the existence of subgroups by exploring the similarities between the attributes of the nodes of the groups, in relation to diet and gender and, to analyse the connectivity between groups based on aspects of similarities between them through SNA and artificial intelligence techniques. Methods: 235 students from 5 different educational centres participate in this study between March and December 2015. Data analysis carried out is divided into two blocks: social network analysis and unsupervised machine learning techniques. As for the social network analysis, the Girvan-Newman technique was applied to find the best number of cohesive groups within each of the friendship networks of the different classes analysed. Results: After applying Girvan-Newman in the three classes, the best division into clusters was respectively 2 for classroom A, 7 for classroom B and 6 for classroom C. There are significant differences between the groups and the gender and diet variables. After applying K-means using population diet as an input variable, a K-means clustering of 2 clusters for class A, 3 clusters for class B and 3 clusters for class C is obtained. Conclusion: Adolescents form subgroups within their classrooms. Subgroup cohesion is defined by the fact that nodes share similarities in aspects that influence obesity, they share attributes related to food quality and gender. The concept of homophily, related to SNA, justifies our results. Artificial intelligence techniques together with the application of the Girvan-Newman provide robustness to the structural analysis of similarities and cohesion between subgroups.


A generalized decision tree ensemble based on the NeuralNetworks architecture: Distributed Gradient Boosting Forest (DGBF)

arXiv.org Artificial Intelligence

Tree ensemble algorithms as RandomForest and GradientBoosting are currently the dominant methods for modeling discrete or tabular data, however, they are unable to perform a hierarchical representation learning from raw data as NeuralNetworks does thanks to its multi-layered structure, which is a key feature for DeepLearning problems and modeling unstructured data. This limitation is due to the fact that tree algorithms can not be trained with back-propagation because of their mathematical nature. However, in this work, we demonstrate that the mathematical formulation of bagging and boosting can be combined together to define a graph-structured-tree-ensemble algorithm with a distributed representation learning process between trees naturally (without using back-propagation). We call this novel approach Distributed Gradient Boosting Forest (DGBF) and we demonstrate that both RandomForest and GradientBoosting can be expressed as particular graph architectures of DGBT. Finally, we see that the distributed learning outperforms both RandomForest and GradientBoosting in 7 out of 9 datasets.


Diabetes detection using deep learning techniques with oversampling and feature augmentation

arXiv.org Artificial Intelligence

Background and objective: Diabetes is a chronic pathology which is affecting more and more people over the years. It gives rise to a large number of deaths each year. Furthermore, many people living with the disease do not realize the seriousness of their health status early enough. Late diagnosis brings about numerous health problems and a large number of deaths each year so the development of methods for the early diagnosis of this pathology is essential. Methods: In this paper, a pipeline based on deep learning techniques is proposed to predict diabetic people. It includes data augmentation using a variational autoencoder (VAE), feature augmentation using an sparse autoencoder (SAE) and a convolutional neural network for classification. Pima Indians Diabetes Database, which takes into account information on the patients such as the number of pregnancies, glucose or insulin level, blood pressure or age, has been evaluated. Results: A 92.31% of accuracy was obtained when CNN classifier is trained jointly the SAE for featuring augmentation over a well balanced dataset. This means an increment of 3.17% of accuracy with respect the state-of-the-art. Conclusions: Using a full deep learning pipeline for data preprocessing and classification has demonstrate to be very promising in the diabetes detection field outperforming the state-of-the-art proposals.


Weighted Conformal LiDAR-Mapping for Structured SLAM

arXiv.org Artificial Intelligence

-- One of the main challenges in simultaneous localization and mapping (SLAM) is real -time processing. High - computational loads linked to data acquisition and processing complicate this task. This article presents an efficient feature extraction approach for mapping structured environments. The proposed methodology, weighted conformal LiDAR-mapping (WCLM), is based on the extraction of polygonal profiles and propagation of uncertainties from raw measurement data. This is achieved using conformal M bius transformation. The algorithm has been validated experimentally using 2 -D data obtained from a low -cost Light Detection and Ranging (LiDAR) range finder. The results obtained suggest that computational efficiency is significantly improved with reference to other state-of -the -art SLAM approaches.